
August 1997 The Delphi Magazine 43

Implementing Class-Traps
For Delphi And C++Builder
Or, how to be notified of the birth and death of your objects
by Cyril Jandia

This article presents a small,
quick ‘n dirty unit allowing you

to trap the creation and destruc-
tion process of Delphi32 and
C++Builder objects. This is
achieved thanks to the TClassTrap
class, which offers a simple inter-
face for encapsulating this very
special service. Trapping object
creation and destruction with this
class gives us the opportunity to
obtain object references at quite
unusual moments, when we would
normally say it is “too soon” or “too
late.” Or, put simpler, using the
TClassTrap class is a cheap means
of hooking calls made to Create and
Free throughout our code.

TClassTrap carries out its job at
what is the very beginning (ie the
begin line) of a constructor or de-
structor’s body. I said “cheap” be-
cause we don’t need the source
code of the classes we are inter-
ested in, nor any kind of explicit
overloading of what is defined in
the .dcu (.obj in C++Builder) object
files we use.

Though originally designed for
Delphi 2 and C++Builder 1,
TClassTrapworks fine with Delphi 3
as well, with minor changes to the
TVmt record’s definition, as I
describe later.

As the title points out, what is
presented applies equally to TOb-
ject derived classes written with
C++Builder. To avoid annoying
references to “Delphi32 and
C++Builder,” only the name
“Delphi” will appear in the text
from now.

TClassTrap In Use
As one example, we can have a
solution to the problem of finding
the instantiation order of controls
created by “foreign” forms (ie
where no source code is available).

Another is how to get a reference
to a “forgotten” exception object,
while we are already executing the
finally part of a try...finally
block: remember that at that mo-
ment SysUtils.ExceptObject is nil,
this is the so-called “too late” case I
described. Yet another example is
when you want to learn more about
(possibly undocumented) objects
which Delphi itself creates for its
own use. Borland C++Builder pres-
ents a great opportunity for this
kind of learning! Plus there are
many cases where there isn’t one
line of source to help us.

Objects Are Everywhere
In Delphi we use objects all the
time, even when just placing a
TButton onto a form. There is one
thing, however, which is not obvi-
ous in many cases, at least in our
source code. How can we know
which classes actually have in-
stances and which do not? As far as
Delphi Object Pascal is concerned,
we can only know for sure whether
a variable does not contain a refer-
ence to an object if its value is nil,
that is it does not point to an
object.

Fine, but if it is not nil we just
don’t know if it points to a valid
object or not. If we called Free on
the reference, it could point to no
object, but it is not automatically
set to nil after the call to Free. So,
to be able to use a test against nil

we must set our variables explic-
itly to nil after calling Free on
objects (Listing 1).

So, we cannot know whether a
non-nil value is actually a valid ref-
erence to an instance or not (ie
pointing to garbage). We need
something else. One idea is to
carry out some kind of “instance
accounting” with, say, a kind of “of-
ficial account” for a particular
class. Such an implementation is
straightforward thanks to Delphi
which provides us with the most
useful TList class: see Listing 2.

This code keeps references to in-
stances of TMyObject in MyObject-
List as they are created and also
ensures the list gets rid of the ref-
erences as the corresponding in-
stances to which they point are
freed. So, instead of examining the
value of AnObjwe can ask MyObject-
List for information about any
instances which are still alive.

This seems to achieve what we
were looking for. One possible
problem is the loss of efficiency in-
troduced by the extra code: in
some intensive computing tasks
this overhead may not be accept-
able. But I’m sure you have found
the real problem with this method:
it’s shouting from the code layout!
It’s related to readability and code
maintenance, because object-
oriented design principles
strongly dissuade us from using
such a programming style with

var
AnObj: TMyObject;

...
if AnObj = nil then
{ we know here for sure that AnObj doesn’t point to a TMyObject }

else begin { it’s not nil: let’s assume AnObj points to a TMyObject }
AnObj.Free;
AnObj := nil; { since we plan to test safely against nil later }

end;

➤ Listing 1

44 The Delphi Magazine Issue 24

tightly-coupled lines. Rather, we’d
prefer that TMyObject register itself
in MyObjectList. See Listing 3.

But now we have a new problem.
We didn’t really want TMyObject’s
implementation to change because
of our need for instance account-
ing. Also, this technique is not of
much help if we have no source
code for TMyObject.

So then, how about an idea
which may look somewhat crazy at
first: could we hook into Delphi’s
own mechanism of object creation
and destruction? After all, Win-
dows itself has in many circum-
stances forced us to carry this out
(see the Windows API reference on
Hooking functions). Couldn’t we
use an analogous technique with
Delphi Object Pascal and/or its
compiler?

Inside the unit SYSTEM.PAS we
find lots of information on object
creation and destruction, includ-
ing the VMT, or Virtual Method
Table.

Secrets Of The VMT
Strongly typed, compiled object
oriented languages which support
polymorphism often use what Bor-
land Object Pascal people call a
Virtual Method Table. This special
compiler generated data structure
is very handy for implementing
polymorphic classes, that is,
classes the instances of which
have an actual type known only at
run time. In fact, it seems to be the
most straightforward way for im-
plementing polymorphism effi-
ciently. Thus statically (ie when
parsing the source code) refer-
ences to polymorphic objects are
of the type of a well-known com-
mon ancestor, let’s say TVehicle.
But, dynamically (ie at run time)
those references actually point to
objects of various derived types,
such as TMotorBike, TCar and so on.
Each of these instances has a hid-
den pointer to the VMT of its actual
run time class type: approximately
equal to a TClass value, also known
as the “metaclass” (more on this
later). Note that no matter how
similar two derived class types
sharing a common ancestor can
be, the compiler will generate two
distinct VMTs. Delphi seems to do

this like other languages, but even
a little bit more since any Delphi
class has a VMT. This is because
the ultimate ancestor, TObject,
from which all Delphi classes de-
rive, already has a VMT with re-
served entries for some predefined
virtual methods it defines. Well
known to us is the Destroy destruc-

tor which is what we must override
to customise the instance destruc-
tion process properly. Listing 4
shows Delphi 2’s VMT layout, as
presented in Ray Lischner’s book
Secrets of Delphi 2.

Note I have modified slightly
Ray’s definition of the VMT record
layout to support Delphi 3’s.

unit u_MyObj;
...
var
MyObjectList: TList{of TMyObject};
AnObj: TMyObject;

...
AnObj := TMyObject.Create;
try
if MyObjectList.IndexOf(AnObj) < 0 then MyObjectList.Add(AnObj);

...
finally
if MyObjectList.IndexOf(AnObj) >= 0 then
MyObjectList.Delete(MyObjectList.IndexOf(AnObj));

AnObj.Free;
end;

...
initialization
MyObjectList := TList.Create;

finalization
if MyObjectList.Count > 0 then
{ error: some TMyObject’s haven’t be freed!
equally, we would have forget to set to nil somewhere... };

MyObjectList.Free;
end;

➤ Listing 2

constructor TMyObject.Create;
begin
inherited Create;
...
if MyObjectList.IndexOf(Self) < 0 then MyObjectList.Add(Self);
...

end;
...
destructor TMyObject.Destroy;
var SelfIndex: Integer;
begin
...
SelfIndex := MyObjectList.IndexOf(Self);
if SelfIndex >= 0 then MyObjectList.Delete(SelfIndex);
...
inherited Destroy;

end;

➤ Listing 3

type
PVmt = ^TVmt;
TVmt = record

{$IFDEF VER100} // D3 specific: both fields prepended since Object Pascal 9.x
(D2, BCB)

Vmt: Pointer; // most likely related to use of ClassParent field below(?)
IntfTable: Pointer; // for D3’s COM interfaces support stuff

{$ENDIF}
AutoTable: Pointer;
InitTable: Pointer;
TypeInfo: Pointer;
FieldTable: Pointer;
MethodTable: Pointer;
DynMethodTable: Pointer;
ClassName: PShortString;
InstanceSize: Cardinal;
ClassParent: Pointer;

{$IFDEF VER100} // D3 specific: field inserted since Object Pascal 9.x (D2, BCB)
SafeCallExceptionMethod: Pointer;

{$ENDIF}
DefaultHandler: Pointer;
NewInstance: Pointer; // what we’ll hook
FreeInstance: Pointer;
Destroy: Pointer; // what we’ll hook

end;

➤ Listing 4

August 1997 The Delphi Magazine 45

Normally, this should remain ok
with Delphi 2 and C++Builder as
well since they defined, respec-
tively, VER90 and VER93 (Delphi 1
was VER80, that is Object Pascal
version 8 after Borland Pascal 7).

We saw a polymorphic object in-
stance has an embedded pointer to
the TClass designating record of its
actual metaclass (ie a TVmt), its
“family” name if you prefer. Well
it’s almost true. Delphi objects
have such a pointer, but this one
actually points to just past the end
of the per-class fixed-size TVmt rec-
ord, instead of pointing to this re-
cord’s beginning. The location
pointed to is where pointers to
programmer-defined virtual meth-
ods are stored, consecutively, us-
ing four bytes each (they are 32-bit
pointers). So, if we cast a TClass
value to a pointer we get the place
where Delphi’s compiler stored
the pointers to all the virtual meth-
ods this TClass has either intro-
duced itself, or inherited from its
direct ancestor.

Step-By-Step
Virtual Method Call
Calling a virtual method on an
object consists of:

1. Determining statically (ie at
compile time) what one could call
the “virtual index” of the method:
such a constant index is unique to
a virtual method name used
throughout a whole set of ancestor
and descendant classes linked
together by direct inheritance.

2. Getting the 32-bit pointer to
the end of the object’s TClassdesig-
nating record (ie a TVmt) a pointer
embedded in the object itself, at
offset 0.

3. Retrieving the pointer to the
virtual method from the array
pointed to by 2. using 1.

4. Carrying out the call to the
code pointed to by 3.

Note that though this scheme
seems lengthy, in fact the compiler
generates quite straightforward
code for these four steps. So the
code remains fast: when compared
to a static method call, a virtual
method call overhead is not a rele-
vant issue nowadays. Anyway, the
biggest known cost of this call
speed issue is experienced with

dynamic method calls. But that’s
another story: see Ray Lischner’s
book for further details.

The undocumented Assembly
View in Delphi 32 is very helpful for
a better understanding of all this:
switch it on and off with the follow-
ing REG_SZ typed key in the
Windows Registry:

HK_CURRENT_USER\Software\
Borland\Delphi\[2|3].0\
Debugging\EnableCPU

setting it to 1 or 0 respectively.
So, how does Delphi manage ob-

ject creation and destruction using
the two TVmt fields NewInstance and
FreeInstance. After studying the
contexts in which these identifiers
appear and how they are used, we
can deduce quite easily which very
specific role they play in the crea-
tion and destruction process. First,
it is important to understand they
do not handle the entire process
alone. Thus, when we write some-
thing like TMyObject.Create, in addi-
tion to the code generated by the
compiler for preparing the access
to the metaclass value (TMyObject),
there are also two other routines
involved that are out of direct
reach: _ClassCreate and _ClassDe-
stroy. It seems they have to do with
the handling of an exception frame
to be used in case of failure. Only
then does the code pointed to by
NewInstance and FreeInstance carry
out the real job, either allocating
and zeroing the dynamic memory
chunk required by a fresh class in-
stance before executing the first
statement of the class constructor,
or deallocating an existing class in-
stance just after the last statement
of the class destructor has been
executed. It’s worth noting that
Delphi defines default implementa-
tions of these methods, so that,
with rare exceptions, all classes
use the same code when it is time
to New or FreeInstance a chunk of
dynamic memory.

A Useful Plug
As just stated, we cannot force
Delphi to create or destroy objects
another way, at least at the level
_ClassCreate and _ClassDestroy are
called, because at this level we are

still under the control of the com-
piler generated code. But it would
be really cool to have a means of
“plugging” our own pointers into
the two “slots” NewInstance and
FreeInstance represented within
the TVmt record. You guessed it, we
do have one, it is called Virtual-
Protect. This function of the Win32
API allows a process to modify the
protection attributes of pages of its
virtual address space. With Vir-
tualAlloc we can modify the pro-
tection attributes of the pages in
which our classes’ VMTs reside,
for instance from PAGE_EXE-
CUTE_READ to PAGE_READWRITE.

Win32 has the reputation of be-
ing a more secure, powerful API
than Win16 could ever be, a main
concern of which is to prevent ap-
plications from corrupting each
other’s data. It may sound strange
therefore to read that Win32
doesn’t forbid self-modifying code
for a process. It is not that strange.
In fact, self-modifying code is al-
lowed for a process because Win32
considers it is the process’s own
responsibility to decide to change
page protection attributes if so de-
sired, but only for pages belonging
to its own virtual address. So that a
process with default application-
level privileges cannot change the
protection attributes of another
process’s pages. In short, Win32
assumes every process knows ex-
actly what it is doing within its own
address space and why, but the
same process cannot decide
changes in another one’s. Thus,
when we want, with the help of the
TClassTrap class to plug “foreign”
pointers into the NewInstance and
FreeInstance slots of an arbitrary
TVmt record, we are modifying our
own code.

Rewriting NewInstance
And FreeInstance
It is one thing to find a API trick for
redirecting compiler-generated
pointers to NewInstance and Free-
Instance within an (also)
compiler-generated TVmt record,
but it is another thing to implement
properly our own versions of both
class functions in order to manage
the list of instances for a particular
TClass. For the latter task, we have

46 The Delphi Magazine Issue 24

to rely on another trick, a Delphi
Object Pascal trick more precisely.
What we want is a simple way of re-
defining both NewInstance and
FreeInstance class methods and at
the same time connect the corre-
sponding TVmt record’s slots of the
class to trap to these redefinitions.
The problem is the phrase: “at the
same time.” It is not a good idea.
Even more, we simply cannot do it
that way.

In fact, we have no other choice
than proceeding in at least two
steps. First, we redefine NewIn-
stance and FreeInstance in a ge-
neric fashion (see TTrappedObject
in the implementation part of the
ObjTraps unit, on the disk of
course). Then and only then we
plug the resulting code pointers
into the NewInstance and FreeIn-
stance slots of the class to trap (see
TClassTrap.SetTrapProc and TCla-
ssTrap.SetMagicHooks in the code
on the disk).

The first step is a static one, in
other wards it is done at compile
time of our unit, once for all. The
second is handled at run time when
the programmer will decide to
register a new class-trap for a
particular TClass value. Hence the
source code found in the unit
OBJTRAPS.PAS unit on the disk.

It’s Up To You Now
Listing 5 shows a basic class trap-
ping example. I’m sure you’ll find
plenty of uses for TClassTrap, be it
for debugging purposes, for class
instance accounting in simulation
models, for Delphi experts, or for
anything else: Delphi program-
ming is only limited by our own
imagination!

Acknowledgements
Very special thanks are due to: Roy
Nelson of ETT for his support on
pre-releases of this article, Hervé
for his many good questions and

remarks, and “ChD” for construc-
tive criticism of early code ver-
sions. You all three have been of
great help. I must also say Ray
Lischner’s book Secrets of Delphi 2
has inspired me a lot.

After two years as a technical
support engineer at Borland
France Support Department for
support contracts, Cyril Jandia,
AKA FLFan, has recently re-
oriented himself towards training
on Borland products. He’s cur-
rently preparing a home for his
fiancée Caroline, still too many
miles away, of whom he impa-
tiently awaits the arrival in the
capital. Both love England and its
culture and hope to spend more
time in the country soon!

Recommended Reading
➤ Object-Oriented Software Construction, Bertrand Meyer,

Prentice-Hall, 1988 (French version by InterEditions, Paris,
1990).

➤ Eiffel — The Language, Bertrand Meyer, Prentice-Hall, 1991
(French version by InterEditions, Paris).

➤ Delphi 2 — Programmation Avancée, Dick Lantim, Eyrolles,
1996 (great on Win32’s IPC, the OpenTools API and more).

➤ Delphi 2 Developer’s Guide, Xavier Pacheco and Steve
Teixeira, SAMS, 1996.

➤ The Revolutionary Guide To Delphi 2, various authors, Wrox
Press, 1996.

➤ Secrets of Delphi 2, Ray Lischner, Waite Group Press, 1996
(Valuable insights on the VMT, RTTI, etc and confirms what
we can learn by ourselves from long journeys deep into the
RTL/VCL source, simply a “must have” book!).

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm) Memo1: TMemo;
private
public
end;

var Form1: TForm1;
implementation
uses ObjTraps;
{$R *.DFM}
procedure MemoTrap(const trap: TClassTrap;
const obj: TObject; op: TObjectOperation);

begin
if op = ooCreate then
MessageBox(0, ‘TMemo created’, ‘’, MB_OK)

else
MessageBox(0, ‘TMemo freed’, ‘’, MB_OK);

end;
initialization
MakeTraps([TMemo], MemoTrap);

end.

➤ Listing 5

	TClassTrap In Use
	Objects Are Everywhere
	Secrets Of The VMT
	Step-By-Step Virtual Method Call
	A Useful Plug
	Rewriting NewInstance And FreeInstance
	It’s Up To You Now
	Acknowledgements
	Recommended Reading

